DSCF neurons within the primary auditory cortex of the mustached bat process frequency modulations present within social calls.
نویسندگان
چکیده
Neurons in the Doppler-shifted constant frequency processing (DSCF) area in the primary auditory cortex of mustached bats, Pteronotus parnellii, are multifunctional, responding both to echolocation and communication sounds. Simultaneous presentation of a DSCF neuron's best low and high frequencies (BF(low) and BF(high), respectively) facilitates its response. BF(low) corresponds to a frequency in the frequency-modulated (FM) component of the first harmonic in the echolocation pulse, and BF(high) corresponds to the constant frequency (CF) component in the second harmonic of the echo. We systematically varied the slopes, bandwidths, and central frequencies of FMs traversing the BF(high) region to arrive at the "best FM" for single DSCF neurons. We report that nearly half (46%) of DSCF neurons preferred linear FMs to CFs and average response magnitude to FMs was not significantly less (P = 0.08) than that to CFs at BF(high) when each test stimulus was paired with a CF at BF(low). For linear FMs ranging in slope from 0.04 to 4.0 kHz/ms and in bandwidth from 0.44 to 7.88 kHz, the majority of DSCF neurons preferred upward (55%) to downward (21%) FMs. Central frequencies of the best FMs were typically close to but did not always match a neuron's BF(high). Neurons exhibited combination-sensitivity to "call fragments" (calls that were band-pass filtered in the BF(high) region) paired with their BF(low). Our data show a close match between the modulation direction of a neuron's best FM and that of its preferred call fragment. These response properties show that DSCF neurons extract multiple parameters of FMs and are specialized for processing both FMs for communication and CFs for echolocation.
منابع مشابه
Neural Mechanisms for Call Processing in the Auditory Cortex of Mustached Bats: Frequency Modulated Sounds and their Lateralization
Speech processing is lateralized to the left hemisphere of the human brain, with some variation between sexes. Single unit electrophysiological recordings in the Doppler-shifted constant frequency processing (DSCF) sub-region of the mustached bat primary auditory cortex (A1) has revealed a left hemispheric advantage for processing species-specific (or conspecific) calls that at least superficia...
متن کاملCombination-sensitive neurons in the primary auditory cortex of the mustached bat.
In the mustached bat, Pteronotus parnellii, neurons in the primary auditory cortex (AI) have been thought to respond primarily to single frequencies, as in other mammals. However, neurons in the Doppler-shifted constant-frequency (DSCF) area, a part of the mustached bat's AI that contains an overrepresentation of the prominent CF2 component of the biosonar signal, were found to show facilitativ...
متن کاملIs humanlike cytoarchitectural asymmetry present in another species with complex social vocalization? A stereologic analysis of mustached bat auditory cortex.
Considerable evidence suggests that left hemispheric lateralization for language comprehension in humans is associated with cortical microstructural asymmetries. However, despite the fact that left hemispheric dominance for the analysis of species-specific social vocalizations has been reported in several other species, little is known concerning microstructural asymmetries in auditory cortex o...
متن کاملPostnatal maturation of primary auditory cortex in the mustached bat, Pteronotus parnellii.
The primary auditory cortex (AI) of adult Pteronotus parnellii features a foveal representation of the second harmonic constant frequency (CF2) echolocation call component. In the corresponding Doppler-shifted constant frequency (DSCF) area, the 61 kHz range is over-represented for extraction of frequency-shift information in CF2 echoes. To assess to which degree AI postnatal maturation depends...
متن کاملAsymmetry in corticofugal modulation of frequency-tuning in mustached bat auditory system.
Focal electric stimulation of the auditory cortex is well suited for exploration of the function of the corticofugal (descending) system and the neural mechanism of plasticity in the central auditory system, because it evokes changes in frequency-tuning, called best frequency (BF) shifts, as does auditory fear conditioning. The Doppler-shifted constant frequency (DSCF) area of the primary audit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 100 6 شماره
صفحات -
تاریخ انتشار 2008